Modeling Hints

There is no perfect model. Only models that are adapted to the specific study that you want to do. SimGrid provides several advanced mechanisms that you can adapt to model the situation that you are interested in, and it is often uneasy to see where to start with. This page collects several hints and tricks on modeling situations. Even if you are looking for a very advanced, specific use case, these examples may help you to design the solution you need.

Doing Science with SimGrid

Many users are using SimGrid as a scientific instrument for their research. This tool was indeed invented to that extent, and we strive to streamline this kind of usage. But SimGrid is no magical tool, and it is of your responsibility that the tool actually provides sensible results. Fortunately, there is a vast literature on how to avoid Modeling & Simulations pitfalls. We review here some specific works.

In An Integrated Approach to Evaluating Simulation Credibility, the authors provide a methodology enabling the users to increase their confidence in the simulation tools they use. First of all, you must know what you actually expect to discover whether the tool actually covers your needs. Then, as they say, “a fool with a tool is still a fool”, so you need to think about your methodology before you submit your articles. Towards a Credibility Assessment of Models and Simulations gives a formal methodology to assess the credibility of your simulation results.

Seven Pitfalls in Modeling and Simulation Research is even more specific. Here are the listed pitfalls: (1) Don’t know whether it’s modeling or simulation, (2) No separation of concerns, (3) No clear scientific question, (4) Implementing everything from scratch, (5) Unsupported claims, (6) Toy duck approach, and (7) The tunnel view. As you can see, this article is a must read. It’s a pity that it’s not freely available, though.

Modeling churn (e.g., in P2P)

One of the biggest challenges in P2P settings is to cope with the churn, meaning that resources keep appearing and disappearing. In SimGrid, you can always change the state of each host manually, with eg simgrid::s4u::Host::turn_on(). To reduce the burden when the churn is high, you can also attach a state profile to the host directly.

This can be done through the XML file, using the state_file attribute of <host>, <cluster> or <link>. Every line (but the last) of such files describes timed events with the form “date value”. Example:

1 0
2 1
LOOPAFTER 8

This file uses a cryptic yet simple formalism:

  • At time t = 1, the host is turned off (a zero value means OFF).

  • At time t = 2, the host is turned back on (any other value than zero means ON).

  • At time t = 10, the profile is reset (as we are 8 seconds after the last event). Then the host will be turned off again at time t = 11.

If your profile does not contain any LOOPAFTER line, then it will be executed only once and not in a repetitive way.

Another possibility is to use the simgrid::s4u::Host::set_state_profile() or simgrid::s4u::Link::set_state_profile() functions. These functions take a profile, that can be a fixed profile exhaustively listing the events, or something else if you wish.

For further reading, you could turn to this example on how to react to communication failures, or this one on how to attach a state profile to hosts and react to execution failures.

Modeling multicore machines

Default model

Multicore machines are very complex, and there are many ways to model them. The default models of SimGrid are coarse grain and capture some elements of this reality. Here is how to declare simple multicore hosts:

<host id="mymachine" speed="8Gf" core="4"/>

It declares a 4-core host called “mymachine”, each core computing 8 GFlops per second. If you put one activity of 8 GFlops on this host, it will be computed in 1 second (by default, activities are single-threaded and cannot leverage the computing power of more than one core). If you run two such activities simultaneously, they will still be computed in one second, and so on up to 4 activities. If you start 5 activities, they will share the total computing power, and each activity will be computed in 5/4 = 1.25 seconds. This is a very simple model, but that is all what you get by default from SimGrid.

Pinning tasks to cores

The default model does not account for task pinning, where you manually select on which core each of the existing activity should execute. The best solution to model this is probably to model your 4-core processor as 4 distinct hosts, and assigning the activities to cores by migrating them to the declared hosts. In some sense, this takes the whole Network-On-Chip idea really seriously.

Some extra complications may arise here. If you have more activities than cores, you’ll have to schedule your activities yourself on the cores (so you’d better avoid this complexity). Since you cannot have more than one network model in a given SimGrid simulation, you will end up with a TCP connection between your cores. A possible work around is to never start any simulated communication between the cores and have the same routes from each core to the rest of the external network.

Modeling a multicore CPU as a set of SimGrid hosts may seem strange and unconvincing, but some users achieved very realistic simulations of multicore and GPU machines this way.

Modeling machine boot and shutdown periods

When a physical host boots up, a lot of things happen. It takes time during which the machine is not usable but dissipates energy, and programs actually die and restart during a reboot. Since there are many ways to model it, SimGrid does not do any modeling choice for you but the most obvious ones.

Any actor running on a host that is shut down will be killed and all its activities will be automatically canceled. If the actor killed was marked as auto-restartable (with simgrid::s4u::Actor::set_auto_restart()), it will start anew with the same parameters when the host boots back up.

By default, shutdowns and boots are instantaneous. If you want to add an extra delay, you have to do that yourself, for example from a controller actor that runs on another host. The best way to do so is to declare a fictional pstate where the CPU delivers 0 flop per second (so every activity on that host will be frozen when the host is in this pstate). When you want to switch the host off, your controller switches the host to that specific pstate (with simgrid::s4u::Host::set_pstate()), waits for the amount of time that you decided necessary for your host to shut down, and turns the host off (with simgrid::s4u::Host::turn_off()). To boot up, switch the host on, go into the specific pstate, wait a while and go to a more regular pstate.

To model the energy dissipation, you need to put the right energy consumption in your startup/shutdown specific pstate. Remember that the energy consumed is equal to the instantaneous consumption multiplied by the time in which the host keeps in that state. Do the maths, and set the right instantaneous consumption to your pstate, and you’ll get the whole boot period to consume the amount of energy that you want. You may want to have one fictional pstate for the boot period and another one for the shutdown period.

Of course, this is only one possible way to model these things. YMMV ;)