
SimGrid Kernel 101

Introducing the SimGrid Kernel

Da SimGrid Team

May 27, 2014

About this Presentation

Goals and Contents
I Present Simix, the simulation kernel of SimGrid

I Show some gore details about where our performance comes from

I This is NOT for newcommers but for hardcore SimGrid users (or curious folks)

The SimGrid 101 serie
I This is part of a serie of presentations introducing various aspects of SimGrid

I SimGrid 101. Introduction to the SimGrid Scienti�c Project
I SimGrid User 101. Practical introduction to SimGrid and MSG
I SimGrid User::Platform 101. De�ning platforms and experiments in SimGrid
I SimGrid User::SimDag 101. Practical introduction to the use of SimDag
I SimGrid User::Visualization 101. Visualization of SimGrid simulation results
I SimGrid User::SMPI 101. Simulation MPI applications in practice
I SimGrid User::Model-checking 101. Formal Veri�cation of SimGrid programs
I SimGrid Internal::Models. The Platform Models underlying SimGrid
I SimGrid Internal::Kernel. Under the Hood of SimGrid

I Get them from http://simgrid.gforge.inria.fr/documentation.html

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 2/15

http://simgrid.gforge.inria.fr/documentation.html

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob

Listen from Bob

Bob

Listen from Alice

Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest �nishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

Constraints

Variables

Conditions{

... Process

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 3/15

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob

Listen from Bob

Bob

Listen from Alice

Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest �nishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

Constraints

Variables

Conditions{

... Process

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 3/15

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob

Listen from Bob

Bob

Listen from Alice

Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest �nishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

Constraints

Variables

Conditions{

... Process

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 3/15

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob

Listen from Bob

Bob

Listen from Alice

Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest �nishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

Constraints

Variables

Conditions{

... Process

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 3/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Introduction Example

function P1

//Compute...
Send()
...

end function

function P2

//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done_actions)
Ptime ← proc_unblock(done_actions)

end while
SimGrid's Main Loop

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 4/15

Simix as an OS (Operating Simulator)

Requirements

I User code to run in a thread-like thing, we control the scheduling

I We want portability

; generic mechanisms; several implementations

I We want to run the processes in parallel; we want model-checking

; Isolate processes from each others

I We want it as e�cient as possible ; That's what an OS does!

Chosen Design

I Processes are perfectly isolated from environment
simcalls: only way of interacting with others/platform
The maestro runs that code �in kernel mode�

I Processes virtualized with context factories
Threads (pthread/win); ucontexts; Raw assembly
Java contexts, Java continuations, Ruby contexts

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 5/15

How e�ciently can we simulate P2P Protocols

P2P is a nightmare for the simulator

I People want huge �ne grained systems (many events in large platforms)

I As a result, no standard too. Many short lived ones (even one shoot ones)

I If we manage be e�cient on this workload, others will be easy

PeerSim
I Simple enough to get adapted, but no network in model (abstracted)

I Query-cycle mode (application as automata): 106 nodes; DES: 103

I Query-cycle: user-unfriendly way to express dist. apps; DES: sequential

OverSim
I Scalable: 105 nodes using simplistic network models

I Realistic: can leverage the omNET++ packet-level simulator

I Simplistic models are sequential, parallel omNET++ seemingly never used

PlanetSim
I Parallel execution, but query-cycle mode only (embarrassingly parallel)

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 6/15

Parallel P2P simulators: the dPeerSim attempt

dPeerSim
I Parallel implementation of PeerSim/DES (not by PeerSim main authors)

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Experimental Results

I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I The result are impressive at �rst glance
I 4h10 using two Logical Processes: only 1h06 using 16 LPs
I Speedup of 4 using 8 times more resources, that really not bad

I But this is to be compared to sequential results
I The same simulation takes 47 seconds in the original sequential PeerSim
I (and 5 seconds using the precise network models of SimGrid in sequential)

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 7/15

Parallel Simulation vs. Dist. Apps Simulators

Simulation

Workload

Simulation

Engine

Execution

Environment

I Granularity, Communication Pattern

I Events population, probability & delay

I #simulation objects, #processors

I Parallel protocol, if any:
� Conservative (lookahead, . . .)
� Optimistic (state save & restore, . . .)

I Event list mgnt, Timing model. . .

I OS, Programming Language (C, Java. . .),
Networking Interface (MPI, . . .)

I Hardware aspects (CPU, mem., net)

S
im

u
la
ti
o
n

W
o
rk
lo
a
d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution

Environment

Classical Parallel Simulation Schema
[Balakrishnan et al]

Layered View of
Dist. App. Simulators

I The classical approach is to distribute the Simulation Engine entirely

I Hard issues: conservatives ; too few parallelism; optimistic ; roll back

I From our experience, most of the time is in so called �simulation workload�
I User code executed as threads, that are scheduled according to simulation
I The user code itself can reveal resource hungry: numerous / large processes

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 8/15

Main Idea here

Split at Virtualization, not Simulation Engine
I Virtualization contains threads (user's stack)

I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

S
im

u
la
ti
o
n

W
o
rk
lo
a
d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution

Environment

Understanding the trade-o�

I Sequential time:
∑
SR

(engine +model + virtu + user)

I Classical schema:
∑
SR

(
max
i∈LP

(enginei +modeli + virtui + useri) + proto

)
I Proposed schema:

∑
SR

(
engine +model + max

i∈WT

(virtui + useri) + sync

)
I Synchronization protocol expensive wrt the engine's load to be distributed

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 9/15

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be di�cult and ine�cient; wouldn't avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don't create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P

3: while Pt 6= ∅ do

4: parallel_schedule(Pt)
5: handle_simcalls()
6: (t, events)← models_solve()
7: Pt ← proc_to_wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary �xed order for reproducibility

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 10/15

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be di�cult and ine�cient; wouldn't avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don't create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P

3: while Pt 6= ∅ do

4: parallel_schedule(Pt)
5: handle_simcalls()
6: (t, events)← models_solve()
7: Pt ← proc_to_wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary �xed order for reproducibility

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 10/15

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be di�cult and ine�cient; wouldn't avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don't create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P

3: while Pt 6= ∅ do

4: parallel_schedule(Pt)
5: handle_simcalls()
6: (t, events)← models_solve()
7: Pt ← proc_to_wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary �xed order for reproducibility

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 10/15

E�cient Parallel Simulation

Leveraging Multicores

I P2P involve millions of user processes, but dozens of cores at best

I Having millions of System threads is di�cult (when possible)

I Co-routines (Unix ucontexts, Windows �bers): highly e�cient but not parallel

I N:M model used: millions of coroutines executed on few threads

T1
tn

T2

tn+1M

Logical View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

Reducing Synchronization Costs

I Inter-thread synchronization achieved through system calls (of real OS)

I Costs of syscalls are critical to performance ; save all possible syscalls

I Assembly reimplementation of ucontext: no syscall on context switch

I Synchronize only at scheduling round boundaries using futexes

I Dynamic load distribution: hardware fetch-and-add next process' index

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 11/15

Microbenchmarking Synchronization Costs

Rq: P2P and Chord are ultra �ne grain: this is thus a worst case scenario

Comparing our user context containers

I pthreads hit a scalability limit by 32,000 processes (amount of semaphores)

I System contexts and ASM contexts have no hard limit (beside available RAM)

I pthreads are about 10 times slower than our own ASM contexts

I ASM contexts are about 20% faster than system ones
(only di�erence: avoid any syscalls on user context switches)

Measuring intrinsic synchronization costs

I Disabling parallelism at runtime: no noticeable performance change

I Enabling parallelism over 1 thread: 15% performance drop of

I Demonstrate the di�culty although the careful optimization

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 12/15

Sequential Performance in State of the Art

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10000

20000

30000

40000

0 500000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

OverSim (OMNeT++)
PeerSim

OverSim (simple underlay)
SimGrid (precise, sequential)

SimGrid (constant, sequential)

Largest simulated scenario
Size Time

Omnet++ 10k 1h40
PeerSim 100k 4h36
OverSim 300k 10h

SG, precise
10k 130s
300k 32mn
2M 6h23

SG, simple 2M 5h30

Memory Usage

I 2M precise nodes: 32 GiB

I That is 18kiB per process

(User stack: 12kiB)

Extra complexity to allow parallel execution don't impact sequential perf
Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 13/15

Bene�ts of the Parallel Execution

0.8

0.9

1

1.1

1.2

1.3

1.4

S
pe

ed
up

 (
pr

ec
is

e
m

od
el

)

1 thread
2 threads
4 threads
8 threads

16 threads
24 threads

0.8

0.9

1

1.1

1.2

1.3

1.4

0 500000 1e+06 1.5e+06 2e+06

S
pe

ed
up

 (
co

ns
ta

nt
 m

od
el

)

Number of nodes

I Speedup (
tseq

tpar
): up to 45%

I More e�cient with simple model:
I Less work in engine + Amhdal law

I Speedup depends on thread amount
I 8 threads (of 24 cores) often better
I Synch costs remain hard to amortize
I They depend on thread amount

Parallel E�ciency (speedup
#cores

) for 2M nodes

Model 4 threads 8 th. 16 th. 24 th.
Precise 0.28 0.15 0.07 0.05
Constant 0.33 0.16 0.08 0.06

I Baaaaad e�ciency results

I Remember, P2P and Chord:
Worst case scenarios

Yet, �rst time that Chord's parallel simulation is faster than best known sequential

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 14/15

Conclusions on Parallel Simulation

Problem Classical parallelisation is suboptimal (spatial decomposition)
I Optimistic's rollbacks di�cult with complex network models
I Pessimistic look ahead limited because P2P app topology 6= network one
⇒ dPeerSim: 2 LPs: 4h; 16 LPs: 1h, but 47 seconds sequential without LPs

Proposal Better to keep central engine and leverage virtualization threads
I Making this possible mandates an OS-inspired separation of processes
I Making this e�cient for P2P mandates to reduce synchros to bare minimum

Evaluation Implemented in SimGrid (http://simgrid.gforge.inria.fr)
I Still orders of magnitude faster than PeerSim and OverSim in sequential
I Parallel execution (somehow) bene�cial for (very) large amount of processes

Take home message

I Parallel P2P simulator mandates creative approaches and careful optimization

Future work
I Further technical improvements (automatic tuning thread amount; Java bindings)

I Attempt distribution (beyond memory limit and for HPC tasks)

I Leverage this tool to conduct nice studies

Da SimGrid Team Kernel 101 Introduction Basics Simulated OS Parallel? Parallel! Evaluation CC 15/15

http://simgrid.gforge.inria.fr

