SimGreen 101
Energize your publications with SimGrid
Power-up (or down) your application with SimGrid

Da SimGrid Team

May 22, 2018
Energy in SimGrid

Available since v3.12

- Power consumption depends on the CPU utilization
- Dynamic Voltage Frequency Scaling
 - changing the frequency of the CPU
 - power consumption and computing power change accordingly
- Switching on/off
 - OFF hosts have a fixed power consumption (boot on LAN)
 - Boot up / shut down can be given a duration and an energy consumption
 - Turning off hosts kills actors; Turning on restarts some of them

```
<actor host="host1" function="master" on_failure="restart"/>
sg_actor_set_auto_restart(actor, 1);
```

TBD sooner or later

- Power consumption depending on network usage (ongoing) and disk (not yet)
- Power models for virtual machines

Probably not adapted to SimGrid granularity

- Energy models of the L2 vs. L3 cache hits
Outline

- Dynamic Voltage Frequency Scaling
- Switching on and off hosts
- Java bindings
- More information on energy in SimGrid
Outline

- Dynamic Voltage Frequency Scaling
- Switching on and off hosts
- Java bindings
- More information on energy in SimGrid
DVFS and Energy Model

DVFS: Dynamic Voltage and Frequency Scaling

- Every modern CPU can reduce its computation speed to save energy
- **pstate**: levels of performance (CPU frequency). *Governors* pick the right one
- In SimGrid: you manually switch between pstates, which change the flop rate

Energy Model

- For a given pstate, power consumption is a linear function of the CPU use
- Classically accepted model in the literature, rarely challenged
Basic Energy Model Instanciation

```xml
<host id="MyHost2" speed="100.0Mf" >
  <prop id="watt_per_state" value="100.0:200.0" />
  <prop id="watt_off" value="10" />
</host>
```

watt_off power consumption when the host is switched off \Rightarrow 10 Watts

watt_per_state power consumption interval [min:max]

- Idling host \Rightarrow 100 Watts
- Fully loaded host (100.0Mf=100 MFlops/s) \Rightarrow 200 Watts
- Linear model in between: CPU loaded at 50% \Rightarrow 150 Watts
DVFS Energy Model Instanciation

<host id="MyHost1" speed="100.0Mf,50.0Mf,20.0Mf" pstate="0">
 <prop id="watt_per_state">
 value="95.0:200.0, 93.0:170.0, 90.0:150.0" />
 </prop>
 <prop id="watt_off" value="10" />
</host>

power 3 pstates (starting at pstate 0): 100 Mflops/s, 50 Mflops/s, 20 Mflops/s

pstate Starting pstate of that host (here, pstate=0, ie. 100 Mflops/s)
watt_per_state two power values (min:max as before) for each pstate
 ▶ Here, CPU loaded at 50% in pstate 2 consumes 120 Watts.
 ▶ Remember, pstates are numbered from 0: pstate 2 is 20 Mflops/s peak
watt_off as before
User-side API

Initialization

▶ \texttt{sg_energy_plugin_init()}; \rightarrow \textcolor{red}{⚠️} call it before anything else!

DVFS and switching pstates

▶ Get total number of pstates on the given host:
 \begin{verbatim}
 int sg_host_get_nb_pstates (sg_host_t host)
 \end{verbatim}

▶ Switch the pstate:
 \begin{verbatim}
 void sg_host_set_pstate (sg_host_t host, int pstate)
 \end{verbatim}

▶ Get the current pstate:
 \begin{verbatim}
 int sg_host_get_pstate (sg_host_t host)
 \end{verbatim}

▶ Get current speed (in flop/s):
 \begin{verbatim}
 double sg_host_get_speed (sg_host_t host)
 \end{verbatim}

▶ Get the speed (in flop/s) for a given pstate:
 \begin{verbatim}
 double sg_host_get_pstate_speed (sg_host_t host, int pstate)
 \end{verbatim}
User-side API (2/2)

Tracking (and predicting) Energy Consumption

- Get total energy consumed so far:
  ```c
  double sg_host_get_consumed_energy (sg_host_t host)
  ```

- Get the max power value (in Watts) for a given pstate:
  ```c
  double sg_host_get_wattmax_at(sg_host_t host, int pstate)
  ```

- Get the min power value (in Watts) for a given pstate:
  ```c
  double sg_host_get_wattmin_at(sg_host_t host, int pstate)
  ```
Outline

- Dynamic Voltage Frequency Scaling
- Switching on and off hosts
- Java bindings
- More information on energy in SimGrid
On/off energy model

- Switching between on and off takes time (seconds) and energy (Joules).

Many ways to do it

- No easy model of the noisy phenomenon: everybody wants something specific
- So SimGrid provides basic mechanisms, and you have to help yourself
- Switching on/off with `sg_host_turn_on()` and `sg_host_turn_off()` is instantaneous
All you need is pstates

Proposal: Declare *virtual pstates* in your xml to encode booting, etc

- For a boot taking 150 seconds and 18 000 Joules, create new pstate 3 with:
 - Computing speed: 1 flop / 150 seconds = 0.006666667f
 - Energy power: 18 000 Joules / 150 seconds = 120 Watts

- For a shut down taking 7 seconds and 770 Joules, create new pstate 4 with:
 - Computing speed: 1 flop / 7 seconds = 0.1429f
 - Energy power: 770 Joules / 7 seconds = 110 Watts

```xml
<host id="MyHost1" pstate="0"
      speed="100.0Mf,50.0Mf,20.0Mf,0.006666667f,0.1429f" >
<prop id="watt_per_state"
      value="95.0:200.0,93.0:170.0,
            90.0:150.0,120:120,110:110" />
</host>
```

Useful API

- Switch off a host directly: void sg_host_turn_off(sg_host_t host)
- Switch on a host directly: void sg_host_turn_on(sg_host_t host)
- Test if a host is up: int sg_host_is_on(sg_host_t host)
Actually switching ON a host

```c
void simulate_bootup(sg_host_t host) {
    int previous_pstate = sg_host_get_pstate(host);
    XBT_INFO("Switch to virtual pstate 3, that encodes the shutting
down state in the XML file of that example");
    sg_host_set_pstate(host,3);

    XBT_INFO("Actually start the host");
    sg_host_turn_on(host);

    XBT_INFO("Wait 150s to simulate the boot time.");
    simgrid::s4u::this_actor::sleep_for(150);

    XBT_INFO("Switch back to previously selected pstate %d", previous_pstate);
    sg_host_set_pstate(host, previous_pstate);
}
```

Feel the power of doing your own model
Actually switching OFF a host

```c
void simulate_shutdown(sg_host_t host) {

    int previous_pstate = sg_host_get_pstate(host);

    XBT_INFO("Switch to virtual pstate 4, that encodes the shutting
down state in the XML file of that example");
    sg_host_set_pstate(host, 4);

    XBT_INFO("Wait 7 seconds to simulate the shutdown time.");
    simgrid::s4u::this_actor::sleep_for(7);

    XBT_INFO("Switch back to previously selected pstate %d", previous_pstate);
    sg_host_set_pstate(host, previous_pstate);

    XBT_INFO("Actually shutdown the host");
    sg_host_turn_off(host);
}
```

Feel the power of doing your own model
Java bindings

Initialization

- `Msg.energyInit();` →⚠️ call it before `Msg.init()`

Tracking (and predicting) Energy Consumption

- Get total energy consumed so far by an host:
  ```java
  public native double getConsumedEnergy()
  ```

Examples in the archive (3.12 and higher)

- Platform file: `examples/platforms/energy_platform.xml`
- Get energy consumption: `examples/java/energy/consumption/Main.java`
Outline

- Dynamic Voltage Frequency Scaling
- Switching on and off hosts
- Java bindings
- More information on energy in SimGrid
Useful pointers

Documentation

▶ The SURF Energy Plugin is actually documented!
 http://simgrid.org/simgrid/3.19/doc/group__SURF__plugin__energy.html

▶ Host management functions
 http://simgrid.org/simgrid/3.19/doc/group__m__host__management.html

Examples in the archive (3.19 and higher)

▶ Platform file: platforms/energy_platform.xml
▶ DVFS: s4u/exec-dvfs/s4u-exec-dvfs.cpp
▶ DVFS and direct switch off: s4u/energy-exec/s4u-energy-exec.cpp
▶ Model boot power consumption: s4u/energy-boot/s4u-energy-boot.cpp

Publication